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Abstract—A new analysis of the transient natural convection between an inclined wet flat plate and ambient

air is presented. The problem is treated by considering two separate regions—i.e. the boundary layer and

the capillary-porous plate—for which a specific differential system of equations is developed. The two

systems are linked with the wall heat and mass balances from which the local and average Nusselt and

Sherwood numbers are deduced. For some particular cases, quantitative comparisons with previous works

reported in the literature agree with each other, Moreover, the agreement between theoretical results and
experimental data is satisfactory in the boundary-layer region.

1. INTRODUCTION

Becausg of their applications in many physical pro-
cesses, such as drying for example, the combined heat
and mass transfer between capillary-porous materials
and air has extensively been studied in the past 20
years. In such processes the geometry of the porous
material and the nature of the surrounding flow evi-
dently play an important part and the present study
15 confined to the drying of a wet inclined flat plate
by free convection. This problem can be treated by
considering two regions.

(1) The first is the boundary layer which grows
near the surface plate. Several studies treating the
boundary-layer heat and mass transfer by laminar free
convection under steady-state conditions with either
constant wall temperature [1-6] or constant wall heat
flux [7, 8] have been published. On the other hand, a
few studies about transient natural convection have
been reported in the literature : note the work of Cal-
lahan and Marner [9] who studied the case of an
isothermal plate. From the literature review, it
appears that the numerical procedures used for solv-
ing the free convection with mass transfer problems
are similar to those which were developed for heat
transfer problems [10, 11]: for inclined plates, the
Rich procedure [12] is generally suitable.

(2) The second region is the non-saturated capil-
lary-porous plate for which several theories have been
proposed for describing the internal heat and moisture
transfer. The “Luikov-De Vries’ model [13] is now-
adays commonly accepted. However, it should be
noted that the equations of this model can only be

integrated if the heat and mass transfer coefficients
between the surface of the plate and the surrounding
air are known.

The literature review shows that no study about
simultaneous and transient heat and mass transfer in
the porous plate and the boundary layer has been
carried out. This is the purpose of the present paper in
which the transient laminar boundary-layer equations
are linked with the ‘Luikov-De Vries’ model. The
linkage conditions are assured by the wall heat and
mass balances.

Equations are solved with a finite difference pro-
cedure and numerical results are presented for pine
wood. The results are compared with an experimental
investigation of the boundary layer by means of an
interferometric method.

2. THEORETICAL ANALYSIS

Consider a wet flat plate of length L and height /
as shown in Fig. 1. This plate is inclined with an angle
o from the vertical and is placed in ambient air, the
temperature 8, and vapour concentration ¢, of
which are constant. At time 7 = ¢,, the upper face is
subjected to a constant heat flux with density Q, so
that a boundary layer grows near this surface because
of buoyancy forces and induces heat and moisture
gradients in the wet plate. The structure of the plate
is assumed to be similar to a capillary-porous one:
the internal heat and mass transfer can thus be de-
scribed by means of the ‘Luikov—De Vries’ model.

We choose an orthogonal coordinates system, the
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NOMENCLATURE
d,y mass diffusivity of the porous material 0 incident heat flux per unit of arca
[m?s Y [Wm 7]
a, thermal diffusivity of the porous material Sh.  local Sherwood number
[m*s 1] Sh average Sherwood number
¢ vapour concentration in the boundary t time [s]
layer [kg kg '] r* dimensionless time
o* dimensionless vapour concentration in 1 Fourier number
the boundary layer r temperature of the porous material [K]
C,  specific heat of wetair [J kg 'K '] 7, initia! temperature of the porous material
C,,  specific heat of dry air [J kg ' K '] K]
C,  specific heat of vapour [J kg 'K '] 7*  dimensionless tempcrature of the porous
ok effective specific heat of the porous material
material [T kg ' K '] T, wall temperature of the flat plate [K]
e, wall vapour concentration [J kg 'K '] u, v velocily components in the x- and p-
D mass diffusion coeflicient of vapor in dry dircctions {m s ']
air [m°s '] u*. r*  dimensionless velocity components in
g gravitational acceleration [ms ] the x*- and y*-directions
Gr¥  average modified thermal Grashof X. v coordinate shown in Fig. |
number defined by equation (21) e coordinates in the porous material
Gr*. local modified mass Grashof number x* y*  system of dimensionless coordinates
defined by equation (38a) in the boundary layers
Gr#,  local modificd thermal Grashof number o dimensionless coordinates in the porous
defined by cquation {38b) matcrial
It height of the porous plate [m] W moisture content {dry basis) of the
h, relative humidity of ambient air [%] porous material [kg kg ']
Ko Kossovitch number. eLowo/(¢X7,) Wy initial moisture content of the porous
K, thermal conductivity of the porous material [kg kg™ ']
material [Wm~' K ] w*  dimensionless moisture content of the
L length of the plate along the x-direction porous material.
[m]
L, vaporization latent heat of water [J kg~ '] Greek symbols
Lu Luikov number, a,,/q, x sloping angle of the plate [deg]
M moisture content (dry basis) of the Lops absorptance
porous material [kg kg '] B coefficient of mass expansion with
N*  ratio GrX/Gr¥, concentration
Na ratio Gr,./Gry where Gr, and Gry are B cocflicient of thermal expansion with
defincd by equations (19) temperature [K ']
Nu.  local Nusselt number d thermal gradient coefficient for transfer
Nu  average Nusselt number of vapour [K ']
P atmospheric pressure [N m 7] £ phase conversion factor
P partial pressure of saturated vapour at r thermal conductivity of the fluid
y=0[Nm 7] Wm 'K
Pn Posnov number, 7,/w, v kinematic viscosity [m~s ']
g{x. ) local wall net heat flux per unit of b fluid temperature [K]
arca {[Wm 7] o dimensionless temperature of the fluid
¢n{x. 1) local wall mass flux per unit of area I density of the fluid (kg m ']
[Wm 7] p density of the porous material [kgm 7.

origin of which is located at point O (Fig. 1): x mea-
sures the distance from point O, along the upper face,
while the normal distance is denoted by y in the
boundary layer and y, along the height of the plate.
The normal distance from the ¥ O x planc is sufficiently
high and all the sides of the plate, except the upper
face. are well insulated so that a two-dimensional
problem can be assumed.

The linkage conditions between heat and mass
transfer and the plate in the boundary layer are
obtained from the thermal and mass balances at y = 0.

Thermal balance

—q(x.0) =0 (1
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F1G. 1. Problem statement and definition of the coordinate
system.

Mass balance

{( W) = < > = } ( >
(3yp vp = h dvp ho= b 6}) L — 0o
(2)

Here T and w are respectively the temperature and
the moisture content (wet basis) in the porous plate ;
¢ the vapour concentration in the boundary layer. The
net wall heat flux g(x, ) may be written as

q(x, t) = qw (xv [) - (1 —E)qum(-x> t) (3)

where the radiative emissivity of the plate has been
neglected. g, (x,¢) and (1—¢)L,q,,(x,t) are the sen-
sible heat flux and the latent heat flux, respectively.
The other symbols appearing in equations (1) and (2)
are defined in the Nomenclature.

As explained above, the problem may be divided
into two regions—the boundary layer and the porous
plate. Upon assuming the Boussinesq and Rich
approximations and negligible dissipative effects, the
boundary-layer equations can be given as follows
(system I).

Continuity

op du  Ov\

a1 +p<ax+6y>_0' “4
Momentum

Ou + Ju + Ju
oo e
ar " Max Tt ady

a2

= vf,T” +gcos @[BO—0,)+B.(c=c)]. (5

Energy
@4_ @_}_ @_L@_f_DCPV_CPa@@ 6
ar " "ax U(?y © pC, 0y° C, dydy )
Mass
dc  dc B¢ ¢
g =-p%¢ 7
FTRY PR S W M

where u and v are the velocity components along the
x- and y-directions, respectively ; 0 the temperature of
air in the boundary layer and p the density of air. The
other symbols are defined in the Nomenclature.

For the porous plate, we have the following equa-
tions (system IT).

Energy

el ow

oT T
T q[ (®)

+62T +
ox® "y,
Mass

w 3w 2T o°T
=am{a2+ +5[~2+H]}- )]
it ox éx cyp
The initial and boundary conditions are given as
follows.

& = o

[P

o*w
2
oy,

f)

Fort <tg:
u(x,y,1) =0 h
v(x,y,) =0
0(x,y,0) =0,
clx,p, 0 =c, r (10)
T(x,p,.0) =0,
W(X, Yo, 1) = Wy
gu(x, 1) = ¢, (x,1) = 0.

For y =0: ¢(x,0,1) = ¢, where ¢, is defined as a
function of @ according to equation (15).

Fort > t,:

System |
Fory=10:

u(x,0,1) =0

D -
v(x,0,1) = — ;j)
r=20

o0 de
g(x.t) = —4 (9}') » —(1—¢)L, Dp( })\ )

(I

Fory— w:
u(x,y,0) -0
H(x,y, 1) =0
v(x.y, 1) = (12)
0(x,y.0) ~> 0,
c(x,y, 1) > e,
System II
Fory,=0and0<x < L:
2T ow
<L> =0; <l> =0. (13
6yp vo=10 ayp Yp=0
For0 <y, <h:
oT oT
- = =0
ax x =L ax x=0
(14)

ow ow
<—é;>v =1L - (5)6): 0 =0
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Fory, = hand 0 < x < L, the boundary conditions
of system II arc given by the thermal and mass bal-
ances (1) and (2).

In equations (11), ¢, is the wall vapour concen-
tration of air: it can be expressed from

h. P,

o= 06225 0378/%10

(15)

where P is the atmospheric pressure whereas P, and
h, respectively denote the partial pressure of saturated
vapour at the wall temperature 7, and the relative
humidity of air. P,, is given by the Bertrand formula
{14]

P (T) = Q32443 -2795/T ~ 3868 oy, 7,
Vs 8

(16)

and it is assumed that the wall equilibrium moisture
content M (dry basis) for a given relative humidity of
air is represented by the Bradley model [15]

h, = exp (— K, — K} K5y (17

where K|, K, and K; depend on the structure of the
porous plate. For wood [16]
K, = 050140002627, ~0.505x 107 °T?
Ky = —7.634+0.8077,—0.144 %10 °T: (18)
K; = 0.01444+0.295x 107*T,.
Equations (4)—(8) and boundary conditions (10)-

(14) have been transformed by introducing the fol-
lowing dimensionless variables and functions.

|

For system |

x Vo s VU
= p¥ == Grf', =730,
L s 'L 2s
u* = ux Gr}~—"°, *= ! Gri o,
v v
0~ () L‘
o = ”ﬁ( DL o5 @GrE 45 = Gry Grr—45,
c* = gh(c: :1— -cos ()Grf 7 = Gr, Grf ¥,
(19)
For system [
* Jp * la,
Yo = VI,T' tﬂ - hz
(20)
oo L W
To, "t T
where
4
Gry = 2@%&’9{’: _ 21

Substituting equations (19)—(21) into differential sys-
tems I and 1, we obtain the following.

For system 1

(3’14* ov*

av* (22

o ot 3 LR J
Cu Ju Ju ¢u
;F; B A & ¥ (3)-’1: = (’}7};‘2 +0* 4 ¢* (23)
c0* o0* 69*
Ut o
ar* ox* ﬁ}’
1 o%0* VE Cp—C,, 1 CO* dc* (24)
~pr ay*? C, Scay*ay*
ok Ak 2 %
(;( o+ Jc* ot ic 17 ,(3,“.7 ‘ 25)
ar* ox* oy*  Sc ay*?

In the energy equation, the dimensionless parameter

EH is defined as

4(x,08,
AB.

whereas Pr and Sc¢ are the Prandtl and Schmidt
numbers.

EH = Gre- Vs (26)

For system I

ar* AV T ‘

gk = A% + o7
oty L] éx ay,
ow* L AN 2wt PPy
ar ~MNL) et g

hY0:T*  girs

+ Pn [(Z) s + 0}*2]} (28)

where Ko, Ly and Pn are respectively the Kossovitch,
Luikov and Posnov numbers, the definitions of which
are given in the Nomenclature. The initial and bound-
ary conditions (10)-(14) are given as follows.

For r* < r¥.
*’ t*) o~ U*(x*,y*, [*) = 9*()(7*,_]/’*, t*)

= c*(x*, p* ) = 0

u*(x*,y

TR,y k) = wh(x*, p¥, 1¥) = L (29}
For¢* > 1}
System 1
W p* ¥ =0 )
*- 175 ~ %k
POk ) = — qu(x ng, Grr ac*
i ;Vﬂ (1 6y* % = 0
o00* LD
() r-p BP0y
(?y ¥ = Aﬂ( Uy* > =0
c* = 9b. ((4, A_i)“[j(; * -
(30
For y* —» oo
W (x*, y*, %) - 0
¥ (x*, y*, * 0 )
(3%, ) - G

0% (X, p*, 1*) — 0

c*(x*, y*, %) - 0.
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System 11
Foryf =0and 0 < x* < I:

(7). (5e),..
ay; y;=0_ ay: vy = .

For0 < yx < 1

aT* _(or*  (ow*
Bx* le o \Ox* e \OX* Jm_ s

- (aW:> -0. (33
ox x* =1

Finally, the dimensionless form of the linkage con-
ditions (1) and (2) are given as follows.

(32)

For thermal balance

K0, <6T*> q(x, 1) (@)
o, Oh 6y;" v = | apQ@ \Oy* i =0
(1—g)L,Dq(x, pB, (ac*>
iﬂ(-aabQ g

%
For mass balance

oy* ),
() oo ()
WFje=1 W oy hg =1

hDq(x, )pB, [ oc*
DA (5)
ppamﬁmA"VO Cy =0

From the dimensionless temperature and vapour
concentration defined by equations (19) and the defi-
nition of the heat and mass transfer coefficients, it
can be shown that the local Nusselt and Sherwood
numbers are

= 1.

(34

0%
x* Grzl/S <ay_*>“ »
Nue= = —Ge (0. %)
\
x* Gr*V/s E (36)
h - 6}1* =10
She= = c*(x*,0, %)

From the above we can define the ratio Sh,/Nu,

Sh. 1 Gr¥, N*
Nu, " Ns Gri, " N, en
with
. _ dn(x, DB
Gr¥, oD (38a)
Grt. = qw(x:lt)ﬂlx (38b)
Bt'(cs —coo)
Ny=-—""—"2. 38
= B(T.=0.) (389)

The ratio N* compares the thermal diffusion with
the mass diffusion. The buoyancy thermal force

opposes the buoyancy mass forces when N* or N, is
negative and aids it for positive values of N* or N,.
The average Nusselt and Sherwood numbers are
obtained by integrating equations (36) over the plate
surface

1

Nu =j Nu, dx*
0

| (39)

Sh = J Sh, dx*.
0

3. NUMERICAL PROCEDURE

The differential equations (22)—(28) together with
initial and boundary conditions (29)—(33) and linkage
dimensionless balances (34) and (35) have been dis-
cretized by means of an implicit finite difference
scheme. The resulting algebraic system has been
treated with the factorization method [17] for the
boundary layer whereas the iterative Gauss—
Seidel procedure has been used for the ‘Luikov’
equations [18].

At time ¢* and for a given abscissa x*, the bound-
ary-layer equations were solved over the range
0 < y* < 6*(x*), where *(x*) is the dimensionless
boundary-layer thickness which has been defined, as
usual, by assuming that

F = max {u*, 0%, 0% c*} < 1072 (40)

Equations were then solved for x*+Ax* and so
on until the abscissa x* =1 was reached. For the
treatment of the Luikov equations, the wall dimen-
sionless temperature and vapour concentration
derivatives were approached with a five-point inter-
polation formula. The dimensionless temperature and
moisture content distributions of the porous plate
were then calculated before computing the wall heat
and mass fluxes defined in equations (1) and (2). Once
the convergence has been reached, the average Nusselt
and Sherwood numbers were computed using
Simpson’s integral method.

The above procedure was repeated for r*+ Ar*,
where Ar* is the dimensionless time step, until the
steady-state regime was reached. This state has been
defined by assuming a 10~ departure for the local
Nusselt and Sherwood number between times r* and
t*+ At*. The numerical procedure could then either
be stopped or continued until a fixed mean value of
the moisture content was obtained.

4. RESULTS AND DISCUSSIONS

For some particular cases, the numerical procedure
was first validated by comparing our results with the
previously published ones in the bulk of the heat and
mass boundary-layer problems. To our knowledge,
Callahan and Marner [9] are the authors who gave
results for the transient natural convection over an
isothermal flat plate and our average Nusselt and
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Table 1. Comparison between our results and equations (41)
for the steady free convection over an isothermal flat plate

Ref. [19] This study
Gr, Nu, Sh, Nu, Sh,
2.01E7 24,457  23.247 25.245  24.028
4.401E7 29.405  27.644 30.151 28.123
6.264E7 31766 30.195 31.886  31.856
33.060 34.133  32.080

7.347E7 31.423

Sherwood numbers then agree with a less than 2%
departure. For the steady-state regime, the calculated
values of Nu, and Sh, were compared with the fol-
lowing relationships [19] :

Gr \"*
Nu, = 0.5105 <4">

Gr.\'"*
Sh,. = 0.4806 <44‘>

(41)

where

Gr. = IB(T—0.)x"
e

For the vertical plate particular case, Figs. 24,
respectively, show the dimensionless »* velocity com-
ponent, concentration and temperature profiles as
functions of the y* coordinate and time ¢. During the
transient state, the thermal boundary-layer thickness
is time increasing, because of the heating of the plate,
whereas the mass and hydrodynamic ones decrease.

At the very beginning of the drying process (¢ < 60
s), the temperature of the surface is constant because
of the thermal inertia of the porous plate and the wall
moisture content also stays constant as long as the

15}

10+

08 24 4 56 v*

F1G. 2. Velocity profile in the boundary layer at x* = 1. I,

t=10s;2,t=1h;3,r=10h;4,t=14h;w, =5kgkg™"

(drybasis):e =0.5:0, =25C:h, =5% ;0 = 500Wm?;
o = 40",

c*. 103

12

56

F1G. 3. Concentration profile in the boundary layer at x* =
l,1=10s:2,r=1h;3,r=10h;4,r=14h; wy=5kg
kg™ ' (dry basis); e =0.5;8, =25C.h = 5%;Q = 500 W

m 7o =40
610°
6 s\
\
A\
\x\ Y
I
\\
2 \
2p N A
“ AN
. NS
\\\‘\ \\\\
b ¢ 1 T 1 \\t y*
1.6 24 3.2 4
F1G. 4. Temperature profile in the boundary layer at x* = .
I,t=10s;2,t=1h:3,r=10h:4,r=14h;,w, =5kg
kg ' (drybasis);e=0.5;0, =25C:h =5%;Q =500 W
m7a=40".

temperature difference between the wall and ambient
air is. During this stage, heat and concentration wall
gradients are driven by conduction and diffusion
because the boundary layer is not fully developed.
Once the buoyancy forces have induced a boundary-
layer flow type, heat and moisture are removed by
convection which becomes the main transport mech-
anism as compared with conduction and diffusion.
The average wall temperature is then time increasing
but the average Nusselt number first decreases a lot
because the thermal boundary-layer thickness grows
up and the wall latent heat flux diminishes as the
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Ruer,’s )
10.5h6r"s (2)

1 ]
N N
2 2

L.

|
60 t.10°
(sec.)

15 30 45

FiG. 5. Variations of the average Nusselt (curve 1) and

Sherwood (curve 2) numbers during the transient state at

x*=1:w, =5 kg kg™ (dry basis); e =0.5; §, = 25°C;
h=5%;0=500Wm %, 0a=0"

surface is dried (Fig. 5). This drying also acts on the
value of the average Sherwood number. Both Nu and
Sh are a minimum for approximately ¢ = 5000 s and
then slowly increase as long as internal moisture can
be removed from the porous material. The cor-
responding local values of the Nusselt and Sherwood
numbers are plotted in Fig. 6 for t =1, 6 and 14 h:
these curves show that the temperature and con-
centration differences between the wall and ambient
air are lower at the bottom of the plate, where evap-
orative cooling accompanying the wall moisture evap-
oration is minimal.

The dimensionless temperature and moisture con-
tent profiles in the porous plate are respectively
reported on Figs. 7 and 8 for x* = 0.5and l at r =1
and 14 h. Under the effect of the constant wall heating
flux Q, the temperatures of all locations in the plate
increase with time and are higher from the bottom to
the top, as explained above. The moisture content is

__thr s

---shgr; ‘fs 10

15 ¢

101

*

6i 03 05 07 X

F1G. 6. Variations of the local Nusselt (a) and Sherwood (b)

numbersatx* =1:1,1=1h;2,tr=6h;3,r=14h;w; =5

kgkg™' (dry basis) ; 8—05,0 =25°C;h. = 5% ;Q = 500
Wmio=0".

T’
2
1.06 p
A
104f R
- ) ////
L // i
1020 - T e '\a
1 s N . 1 y'

0.25 0.5 0. 75 p

FiG. 7. Temperature distributions in the porous plate. For

x*=05and I. I, t=1h;2, =14 h; wy=5 kg kg™'
(drybasis) ;& = 0.5;0, =25C:h =5%:0=500Wm *;
x=0"
w‘
=1 —
0.5 -~
1
1
\
2
0.9t
A
3
0.8 . L L
0.25 05 0.75 vy

p

FiG. 8. Moisture content distributions in the porous plate

forx*=land05.1,t=1h;2,r=3h;3,t=14h.w, =5

kgkg™ ' (dry basis) ;e = =0.5; B, =25C:h =5%:0 = 500
Wm “;2=0:0, =25C.

seen to decrease with time and is highly correlated
with the position of the thermal vaporization zone
which is deeper as time increases. It should be noted
that the moisture removed also depends on the vapour
diffusion from the evaporation zone to the surface of
the plate, which means that the physical structure of
the porous material acts on heat and mass transfer in
the boundary layer. This phenomenon can be visu-
alized by varying the value of the vaporization factor
¢, as shown in Fig. 9.

In Fig. 10, the local Nusselt and Sherwood numbers
are plotted against the x* coordinate for three values
of the inclination angle o = 0" (vertical plate), 30~ and
60°. These values were obtained at a time of 120 s,
when the thermal, mass and hydrodynamic boundary
layers are fully developed. As « is higher, the active
component of buoyancy forces, which generate the
free convection, proportionally decreases with cos («),
inducing smaller local heat and mass transfer co-
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F1G. 9. Effect of the phase conversion factor ¢ on temperature

and moisture content distributions in the porous plate at

*=11e=05:26=1;r=3h;w,=5kgkg ' (dry
basis); 00, =25C:h =5%:0=500Wm *;2=0"

__Nu,(lir[”s
—-$h,6r{"s.10°
I
3
15+
10+
5 b
| Z . . ,
0.1 03 05 07 x*

F1G. 10. Variations of the local Nusselt and Sherwood num-

bers with the inclination angle of the plate at x* = 1. 1,

o = 0" (vertical plate); 2, « =30"; 3, a =60"; 1 =120 s;

wy=5kgkg ' (dry basis); ¢ =0.5.8, =25C: h, = 5%;
Q0 =500Wm~ 2

efficients. It follows that the moisture removed from
the plate also decreases as « is higher. The cor-
responding dimensionless u* velocity component,
temperature and concentration profiles in the bound-
ary layer are shown in Figs. 11-13: it is noted that
the wall temperature and concentration decreases
whereas the mass and thermal boundary-layers thick-
nesses increase as a is higher, which explains the results
given in Fig. 10. All other comments which have been
outlined for the vertical plate case are also valid for
the inclined plate one.

ZEGHMATI ¢t al.

u*.102
15 4
%
10] [/
{/
i
i
“/
5 4
1 i
1

F1G. 1. Velocity profile in the boundary layer as a function

of the inclination angle of the plate at x* = 1. 1 = 120 s; I,

a=30":2.2=60"; ¢=0.5; w, =5 kg kg~ ' (dry basis) ;
B, =25C:h =5%:0Q=500Wm -,

301

15

y"

0

F1G. 12, Temperature profile in the boundary layer as a

function of the inclination angle of the plate at x* = 1. 1,

a=230";2,0=60":c=0.5;7=120s;w, =5kgkg ' (dry
basis): 0, =25C;h,=5%:0=500Wm °.

t*.103

L y *

2 4 6 8 10 12

F1G. 13. Concentration profile in the boundary layer as a

function of the inclination angle of the plate at x* = 1. 1,

2=30";2,0=60"e=05;1,1r=120s; wy =5 kg kg™'
(dry basis): 0, =25°C:h, =5%:0=500Wm 2



Study of transient laminar free convection over an inclined wet flat plate

— Nufr, s
—-- shgr;%,10°

16+

10

xi

o1 03 0.5 0.7

Fi6. 14. Effect of the vapour velocity at the wall on the local
Nusselt and Sherwood numbers at x* = 1. 1, velocity is given
by boundary conditions (11} 2, v=0for y =0; a = 60°;
e=05.f=605;w,=235kegkg ' (dry basis); 0, = 25°C;
ho=5%,0=500Wm

In order toillustrate the effect of the vapour velocity
at the wall, the value of which being calculated from
boundary conditions (11), the local Nusselt and Sher-
wood numbers have been compared with those result-
ing from the usual assumption, thatisep = Gfory = 0.
Figure 14 shows that this assumption is practically
justified. On the other hand, it should be noted that
the sensible heat of the removed vapour modifies the
dimensionless temperature and concentration profiles
in the boundary layer, as shown in Fig. 15 for x* = |
and o = 0°.

Finally it appears from Fig. 16 that an increase of
either the incident wall heat flux Q or the initial
moisture content w, leads to a better heat and mass
transfer from the plate. This figure presents the vari-
ations of the ratio N* as a function of the x* coor-
dinate : recalling the definition of N'*, it thus illustrates
the comparison between the intensities of thermal and
mass buoyancy forces.

5. EXPERIMENTAL INVESTIGATION OF THE
BOUNDARY LAYER

In order to give some quantitative validation of the
above theory, the interferometric holography tech-
nigue has been used for the experimental investigation
of heat and mass transfer in the boundary layer. The
details of this real-time method have been reported
elsewhere [20, 21] and will not be repeated here.

The experimental sample is a parallelepipedic satu-
rated pine wood plate (0.3 x0.15x0.02 m), the heat-
ing of which is assured by four 150 W lights. The
incident radiative heat flux was mcasured with a solari-
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FiG. 15. Effect of the sensible heat of the removed vapour

on dimensionless temperature and concentration profiles in

the boundary layer at x* = 1. 1, sensible heat is neglected in

the calculations ; 2, sensible heat is not neglected. ¢ = 120s;

e=05; x*=1; wy=5kg kg™' (dry basis); 8, = 25°C;
= 5%;0 =800 Wm~2,

K 102

7.5~

|

. L : o

0.2 0.4 0.6 X

F16. 16. Effect of the incident wall heat flux @ and the initial

moisture content on the ratio N*. 1, w, = 5 kg kg™’ (dry

basis}, O = 500 W m™?: 2, w, =5 kg kg™’ (dry basis),

Q=1000 Wm~?; 3, w, =3 kg kg™' (dry basis), Q = 500
Wmt=1h;g=05;0, =25C; h = 5%;a=0°

*

meter whereas the plate temperature was controlled
with two rows of thermocouples.

Figure 17 presents a typical interferogram and the
two interesting geometrical parameters for the cal-
culation of the local Nusselt and Sherwood numbers
at point M : the distance AB from the wall and the
distance x. For the special case of water vapour, the
Schmidt number (0.68) and the Prandtl number (0.71)
are very close, so that it is impossible to separate the
interface fringes generated by concentration differ-
ences from those which have a thermal origin.



908 B. ZEGHMATI ¢f al.

Fi1G. 17. Typical interferogram and definition of geometrical
parameters used for the calculation of the local Nusselt and
Sherwood numbers.

However, if Pr= Sc is postulated, it can casily be
shown that [21]

X

Nu, = Sh, = AB’ 42)

The above equation only being valid for superficial
evaporation. For internal evaporation, the Sherwood
number is highly affected by the vapour diffusion in
the porous material, which leads to smaller values of
the mass transfer coefficient, as seen in the numerical
results of this study. While experiments were carried
out with a saturated porous material, Fig. 18 exhibits
a reasonable agreement between theory and exper-
imental data.

Nuy ., Shy
50+ P
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P //,/‘7
e
30 // e
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10 20

x
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FiG. 18. Comparison between theoretical and experimental

local Nusselt and Sherwood numbers at x* = 1: x = 40" :
0, =26C:h =38%:0=460Wm"*

6. CONCLUSION

A theoretical analysis of the transient free con-
vection over an inclined wet flat plate has been pre-
sented. The problem is treated by linking the bound-
ary-layer equations with the “Luikov Dc Vries'
model. the linkage conditions being assured by the
wall heat and mass transfer balances. When the incli-
nation angle from the vertical direction increases. it is
found that the boundary-layer heat and mass transfer
diminishes, so that the moisture removed from the
plate also decreases. The average Nusselt and Sher-
wood numbers are first time decreasing before equat-
ing to their steady-state value. It has been shown that
these values arc highly affected by the internal vapour
diffusion, so that the moisture removed is controlled
by the structure of the porous material. For the special
case of superficial evaporation, measurements with
an interferometric holography method were carried
out and comparison between theory and data shows
a reasonably good agreement.
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ETUDE DE LA CONVECTION NATURELLE TRANSITOIRE SUR UNE PLAQUE
PLANE HUMIDE ET INCLINEE

Résumé—On présente une analyse nouvelle de la convection naturelle transitoire entre une plaque humide

et inclinée et I'air ambiant. Dans chacune des deux régions qu’il est possible de définir dans ce probléme—

a savoir la couche limite et la plaque poreuse—on écrit un systéme d’équations différentielles décrivant les

transferts de masse et de chaleur. Les deux systémes sont couplés a 'aide des bilans thermique et massique

pari¢taux, desquels on déduit les nombres de Nusselt et de Sherwood locaux et moyens. Les résultats

théoriques s’accordent avec ceux préalablement publiés dans la littérature, pour quelques cas particuliers.
Ces résultats sont aussi validés par une étude expérimentale de la couche limite.

UNTERSUCHUNG DER INSTATIONAREN LAMINAREN FREIEN KONVEKTION AN
EINER GENEIGTEN FEUCHTEN EBENEN PLATTE

Zusammenfassung—Eine neue analytische Untersuchung der instationdren natiirlichen Konvektion
zwischen einer geneigten feuchten ebenen Platte und der umgebenden Luft wird vorgestellt. Zwei unter-
schiedliche Gebiete werden betrachtet: Die Grenzschicht und die kapillarporése Platte. Dafiir wird ein
System von Differentialgleichungen formuliert. Die beiden Systeme sind durch die Warmestromdichte und
die Massenstromdichte an der Wandoberfliche gekoppelt, hieraus werden 6rtliche und mittlere Nusselt-
und Sherwood-Zahlen abgeleitet. Fiir einige Sonderfille werden die Ergebnisse mit Angaben aus fritheren
Arbeiten in der Literatur verglichen, wobei sich gute Ubereinstimmung zeigt. Dariiberhinaus ist
die Ubereinstimmung zwischen theoretischen Ergebnissen und Versuchsdaten im Grenzschichtgebiet
befriedigend.

UCCJIEJOBAHHE HECTALIMOHAPHOH JIAMMHAPHOM CBOBOJHO! KOHBEKIIHH
HAJ HAKJIOHHOH BJIAXHO¥H ITJIOCKOA NJIACTHHON

Amsoranma—IIpoBeseH ‘aHAIH3 HECTALMOHAPHON eCTECTBEHHOR KOHBEKIHWH HaZ HAaKJOHHOH BIAXHOH
IJIOCKOH IUIACTHHOH B OKpyxarowieM Bosiyxe. [l pelueHHs 3a3a4M MCCICOYIOTCA Pas3fesibHO [IBe
0bsacTH: NOrpasHYHbIA CJIOH H KanWUIAPHO-NOPHCTas IUIACTHHA—IUIS KaXIOH H3 HHX INOJyYeHH
cucremul THgupepeHIHanbHbIX YpaBHEHHR. O0e cHCTEMBI CBA3aHB GaIAHCOM TEIUIA B MAacchl Ha CTEHKE,
H3 KOTOPOTO BBIBOJAATCH JIOKaNbHBE H cpeanne yHcna Hyccensta u Mleppyna. [ins HexoToOpeIX ciydaes
KaYECTBCHHOE CPaBHEHHE NOXA3aNo HX COOTBETCTBHE C pe3ynbTaTaMi panee omybimxosaHHmx pabor.
Kpome Toro, noayseHo YAOBJIETBOPHTENLHOE COTJIACHE MEXIY TEOPETHYECKHMH PE3YAbTAaTAMH M IKCHe-
PHMECHTANBHLIMH AAHHMMHE U1 061aCTH HOrPAHAYHOTO CIIOA.



