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Abstract-A new analysis of the transient natural convection between an inclined wet flat plate and ambient 
air is presented. The problem is treated by considering two separate regions-i.e. the boundary layer and 
the capillary-porous plate-for which a specific differential system of equations is developed. The two 
systems are linked with the wall heat and mass balances from which the local and average Nusselt and 
Sherwood numbers are deduced. For some particular cases, quantitative comparisons with previous works 
reported in the literature agree with each other. Moreover, the agreement between theoretical results and 

experimental data is satisfactory in the boundary-layer region. 

1. INTRODUCTION 

BECAUSE of their applications in many physical pro- 
cesses, such as drying for example, the combined heat 
and mass transfer between capillary-porous materials 
and air has extensively been studied in the past 20 
years. In such processes the geometry of the porous 
material and the nature of the surrounding flow evi- 
dently play an important part and the present study 
is confined to the drying of a wet inclined Aat plate 
by free convection. This problem can be treated by 
considering two regions. 

(1) The first is the boundary layer which grows 
near the surface plate. Several studies treating the 
boundary-layer heat and mass transfer by laminar free 
convection under steady-state conditions with either 
constant wall temperature [l-4] or constant wall heat 
flux 17, 81 have been published. On the other hand, a 
few studies about transient natural convection have 
been reported in the literature : note the work of Cal- 
lahan and Marner [9] who studied the case of an 
isothermal plate. From the literature review, it 
appears that the numerical procedures used for solv- 
ing the free convection with mass transfer problems 
are similar to those which were developed for heat 
transfer problems [IO, 1 I]: for inclined plates, the 
Rich procedure [I 2) is generally suitable. 

(2) The second region is the non-saturated capil- 
lary-porous plate for which several theories have been 
proposed for describing the internal heat and moisture 
transfer. The ‘Lutkov-De Vries’ model [ 131 1s now- 
adays commonly accepted. However, it should be 
noted that the equations of this model can only be 

integrated if the heat and mass transfer coefficients 
between the surface of the plate and the surroundings 
air are known. 

The literature review shows that no study about 
simultaneous and transient heat and mass transfer in 
the porous plate and the boundary layer has been 
carried out. This is the purpose of the present paper in 
which the transient laminar boundary-layer equations 
are linked with the ‘Luikov-De Vries’ model. The 
linkage conditions are assured by the wall heat and 
mass balances. 

Equations are solved with a finite difference pro- 
cedure and numerical results are presented for pine 
wood. The results are compared with an experimental 
investigation of the boundary layer by means of an 
interferometric method. 

2. THEORETICAL ANALYSIS 

Consider a wet flat plate of length f. and height h 
as shown in Fig. 1. This plate is inclined with an angle 
M from the vertical and is placed in ambient air, the 
temperature 8,?_ and vapour concentration c, of 
which are constant. At time f = fO, the upper face is 
subjected to a constant heat flux with density Q, so 
that a boundary layer grows near this surface because 
of buoyancy forces and induces heat and moisture 
gradients in the wet plate. The structure of the plate 
is assumed to be similar to a capillary-porous one: 
the internal heat and mass transfer can thus be de- 
scribed by means of the ‘Luikov-De Vries’ model. 

We choose an orthogonal coordinates system, the 
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NOMENCLATURE 

utrr mass diffusivity of the porous material Q incident heat Rux per unit of arca 

[m’s ‘1 [W 111 ‘] 

“<i thermal diffusivity of the porous material 32, local Sherwood numbct 

[m’ 5 ‘1 S/I av-cragc Sherwood number 

C vapour concentration in the boundary t ~inlC [s] 
layer [kg kg ‘1 I* dimensionless time 

c+ dimensionless vapour concentration in 1* Fourier number 

the boundary layer ; temperature of tbc porous material [K] 

c;, specific heat ofwct air [J kg ’ I( ‘1 7, initial temperature of the porous material 

c;,, specific heat of dry air [.I kg ’ K ‘1 [Kl 
c,,, specific heat of vapour [J kg ’ K ‘1 7-e dilll~nsionlcss t~lnpc~tllrc of the porous 

(,a effective specific heat of the porous material 

material [J kg ’ K ‘1 7, wall temperature of the flat plate [K] 

(; wall vapour ~on~cnt~ltiox~ (J kg ’ K ‘1 Il. 1’ v&city components in the X- and ,I’- 

D mass diffusion coeflicient of vapor in dry directions [m s ‘1 

air [m’s ‘1 ii*. 2‘* diliicilsioniess velocity components in 

.V gravitational acceleration [m s ‘] the .Y*- and _r*-directions 

G$ average modified thermal Grashof .Y. 1‘ coordinate shown in Fig. I 
number defined by equation (2 11 .“,‘ coordinates in the porous material 

Gr,*, local modified mass Grashof number .@. 1.” system of dimensiontess coordinates 

defined by equation (%a) in the boundary layers 

Grf, local modified thermal Grashof number * 
!P ~~~Ill~nsioi~less coordinates in the porous 

dcfincd by equation (38b) material 

k height of the porous plate [m] II’ moisture content (dry basis) of the 

iI, relative humjdity of ambient air [X] porous material [kg kg ‘3 

k-0 Kossovitch number. <:I,, n,,:(~$7’~) l”il initial moisture content of the porous 

fi, thermal conductivity of the porous material [kg kg ‘1 
material [W m ’ K ‘1 Ii‘* dimensionless moisture content of the 

L length of the plate along the .v-direction porous material. 

[ml 
L, vaporization latent heat ofwater [J kg ‘1 Greek symbols 
Lrr Lui kov number, N,,,~u,, Y sloping angle of the plate [deg] 

M moisture content (dry basis) of the absorptancc 
porous material [kg kg ‘1 ?’ coefficient of mass expansion with 

:li* ratio Gr,!, ,‘GI$, concentration 

.v, ratio Gr, iGr, whet-c Gr, and Gr, are Pi coefficient of thermal expansion with 

defined by equations ( 19) temperature ]K _ ‘1 

Nlf, local Nusselt number k thermal gradient coefficient for transfer 

Nrt average Nussclt number of sapour [K ‘1 

P atmospheric pressure [N m ‘] 1: phase conversion factor 

PI, paf-tial prcssurc of snturatcci vapour at i. thermal col~dl~~tivity of the fhrid 
,i’ = 0 [N m ‘1 [W m ’ K ‘1 

Pl7 Posnov number, 67,,/1r,, 1’ kinematic viscosity [m’ s ‘1 
q(,v. t) local wall net heat flux per unit of. 0 fluid temperature [K] 

arca [Win ‘1 I)* dimensionless temperature of the fluid 
r/,,,(-\-. I) local wall mass flux per unit of area /’ density of the fluid [kg m ‘1 

[W 111 ?l 
J)P density of the porous material [kg. m ‘1. 

origin of which is located at point 0 (Fig. 1) : .r mea- The linkage conditions between heat and mass 
sures the distance from point 0, along the upper face, transfer and the plate in the boundary layer arc 
while the normal distance is denoted by r in the obtained from the thermal and mass balances at)’ = 0. 
boundary layer and .r, along the height of the plate. 
The nomral distance from the J’ 0 .Y plant is sufficiently Thermal balance 

high and all the sides of the plate, except the upper 
face. are well insulated so that a two-dinlensionai 
problem can he assumed. -(I(.“, 1) = 0. (1) 
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FIG. I, Problem statement and definition of the coordinate 
system. 

Mass balance 

(2) 

Here T and w are respectively the temperature and 
the moisture content (wet basis) in the porous plate; 
c the vapour concentration in the boundary layer. The 
net wall heat flux q(x, t) may be written as 

q(x,t) = qw(-u,t)-(l-&)L,q,,(x,t) (3) 

where the radiative emissivity of the plate has been 
neglected. qw(x, t) and (1 -~)L,,q~(x, t) are the sen- 
sible heat flux and the latent heat flux, respectively. 

The other symbols appearing in equations (1) and (2) 
are defined in the Nomenclature. 

As explained above. the problem may be divided 
into two regions-the boundary layer and the porous 

plate. Upon assuming the Boussinesq and Rich 
approximations and negligible dissipative effects, the 
boundary-layer equations can be given as follows 
(system I). 

Continuity 

1 

g+P ( > @+L, =o, 
ax ay 

Momentum 

= v$ +gcos (~)[B,(o-o,,)+B~(c--c,)l. (5) 
‘S 

Energy 

a0 a0 a0 2 a20 
z+uz+v-=-7+D 

c,, - c,, 80 ac 
ay PC, ay CP 

ay ay’ (6) 

Mass 

a~ ac ac 2 

t +uz +I_- = De ay aJ 
(7) 

where u and v are the velocity components along the 

x- and y-directions, respectively; 0 the temperature of 
air in the boundary layer and p the density of air. The 

other symbols are defined in the Nomenclature. 
For the porous plate, we have the following equa- 

tions (system II). 

Energy 

z&[$+$J+;$ (8) 

Mass 

i?M 
-=a 
at { 

fi+~+d[$+~]}. (9) 
In cix? 

The initial and boundary conditions are given as 

follows. 

For t < to : 

24(x, y, t) = 0 

0(x, y, t) = 0 

0(x, y, t) = 0, 

c(x, y, t) = c, 

T(x, ypr t) = 0, 

“.(x,yp, t) = u‘” 

q&x, t) = qm(x, t) = 0. 

> (10) 

For y = 0 : c(x, 0, t) = c, where c, is defined as a 

function of H according to equation (15). 

For t 2 t,, : 

System I 
Fory=O: 

u(x. 0. t) = 0 1 

20 
dx,4 = -I” $ ,_o 0 -(I-c)L,Dp ; 0 J I _ 0 

Fory-+cx,: 

L&Y, J’, t) + 0 

c(x.y, t) + 0 

K? Y, t) -+ 0 I 

c(x, I’, t) + (‘, I 

System II 
Foryp=OandO<x<L: 

ForO<y,<h: 

($,. = ($,, =O 

(g=,. = ($ =O. I 

I (11) 

(12) 

(13) 

(14) 



For_r, = hand 0 < .Y c L. the boundary conditions 
of system II arc given by the thermal and mass bal- 
antes (I) and (2). 

In equations (1 l), L’, is the wall vapour concen- 
tration of air : it can be expressed from 

(., = 0,622 .__-A!! (15) = 
P-0.378&!‘,, 

where P is the atmospheric pressure whereas P,, and 
h, respectively denote the partial pressure of saturated 
vapour at the wall tempe~dture T, and the relative 
humidity of air. P,, is given by the Bertrand formula 

In the energy equation, the djmensionless parameter 

u41 
EH is defined as 

P,,(T,) = 1()2?442-2795'7 -3.XhXiogll,r; 
(16) 

EI;I= !w!!L,Gr*.- 1,s 

ng,. L 
(26) 

and it is assumed that the wall equilibrium moisture 
content M (dry basis) for a given relative humidity of whereas Pr and S(, are the Prandtl and Schmidt 

air is represented by the Bradley model [ 151 numbers. 

11, = exp (-~z-_K[““2’~“~) (17) 
For system II 

where K,, A’, and K, depend on the structure of the 
porous plate. For wood [ 161 

K, = 0.501 +O.O0262T,-0.505 x IO-- ‘T\’ 

i 

&V” 
Kz = -7.63+0.8077-,-0.144x 10 ‘7’; -=Lu 

(18) at,* 

K, = 0.0144+0.295x 10-4T,. J 

Equations (4)-(g) and boundary conditions (IO)- 
(14) have been transformed by introducing the fol- 

+I% (28) 

lowing dimensionless variables and functions. 

For system I 

_yy* = -L ,h = ?I Gr; 1’5 
L’) f. 

/ f% = ” &f2”, 
L2 

where Ko, Lu and Pn are respectively the Kossovitch, 
Luikov and Posnov numbers, the definitions of which 
are given in the Nomenclature. The initial and bound- 
ary conditions (1 O)-( 14) are given as follows, 

UL 
Forr*<O:: 

r,* =: -.._ G,.: -- ? 5 p = 
l>L 

!’ 
-Grl* ls5, 
!J u*(x*,y*, t*) = z:*(x*,y*, r*) = 8*(x*,4’*, t*) 

(29) 

sA(c-cr IL’ 
c* = _._. .-~r-- .-._ cos (@Gr;F 4,' = Gr, Gr: 4,5. 

For system II 

For t* > tz: 

(19) 
System I 

U*(.X*,J~*, t*f = 0 

* = .P .r 
?‘p h’ 

T 
T” = lc _ 

(20) 

where 

Substituting equations (19)-(21) into differential sys- Fory*-+co: 

terns I and II, we obtain the following. .*(x*,y’, t*) --t 0 

For system 1 z'*(X*,,y*,t*)--t 0 

I%** al+ o*(.x*,y*, t*) -+ 0 

p- ($" =o (22) 
C*(X*,J'*,f*) -0. 

I 

(31) 
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System II 
Fory,*=OandO<x*< 1: 

(~),;~o = (g):_. =O. (32) 
ForO<y,*< 1 

(z)y*_o = (ig._, = (or._” 
aW* = (6) 3X* 

= 0. (33) 
r- = I 

Finally, the dimensionless form of the linkage con- 
ditions (1) and (2) are given as follows. 

For thermal balance 

%(g),;_ ,-?g$(g>,,.=o 
(1 -w,Ddx, ~PB, ac* - 

@4K+bQ C-1 ay* ).* = o 
= 1. (34) 

For mass balance 

From the dimensionless temperature and vapour 

concentration defined by equations (19) and the defi- 
nition of the heat and mass transfer coefficients, it 
can be shown that the local Nusselt and Sherwood 
numbers are 

(36) 

From the above we can define the ratio ShJNu, 

Sh, 1 Gr,*, N* 

Nu, = NT Gr& - K 

with 

G,.* = %“(x, t)fl,x 
TV 1 

(37) 

(38~) 

The ratio N* compares the thermal diffusion with 
the mass diffusion. The buoyancy thermal force 

opposes the buoyancy mass forces when N* or N, is 

negative and aids it for positive values of N* or NA. 

The average Nusselt and Sherwood numbers are 
obtained by integrating equations (36) over the plate 

surface 

- C’ Nu = Nu, dx* 1 
Jo 

Sh, dx*. 

(39) 

3. NUMERICAL PROCEDURE 

The differential equations (22))(28) together with 

initial and boundary conditions (29)-(33) and linkage 
dimensionless balances (34) and (35) have been dis- 
cretized by means of an implicit finite difference 

scheme. The resulting algebraic system has been 
treated with the factorization method [17] for the 
boundary layer whereas the iterative Gauss- 
Seidel procedure has been used for the ‘Luikov’ 

equations [ 181. 
At time t* and for a given abscissa x*, the bound- 

ary-layer equations were solved over the range 
0 < y* < 6*(x*), where 6*(x*) is the dimensionless 
boundary-layer thickness which has been defined, as 

usual, by assuming that 

F = max {u*, v*, 6*, c*} < lo- ‘. (40) 

Equations were then solved for x* +Ax* and so 
on until the abscissa x* = 1 was reached. For the 
treatment of the Luikov equations, the wall dimen- 
sionless temperature and vapour concentration 
derivatives were approached with a five-point inter- 
polation formula. The dimensionless temperature and 
moisture content distributions of the porous plate 
were then calculated before computing the wall heat 
and mass fluxes defined in equations (1) and (2). Once 
the convergence has been reached, the average Nusselt 
and Sherwood numbers were computed using 
Simpson’s integral method. 

The above procedure was repeated for t* + At*, 

where At* is the dimensionless time step, until the 
steady-state regime was reached. This state has been 

defined by assuming a 10e4 departure for the local 
Nusselt and Sherwood number between times t* and 
t*+At*. The numerical procedure could then either 
be stopped or continued until a fixed mean value of 
the moisture content was obtained. 

4. RESULTS AND DISCUSSIONS 

For some particular cases, the numerical procedure 
was first validated by comparing our results with the 
previously published ones in the bulk of the heat and 
mass boundary-layer problems. To our knowledge, 
Callahan and Marner [9] are the authors who gave 
results for the transient natural convection over an 
isothermal flat plate and our average Nusselt and 
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Table 1, Comparison between our results and equations (41) 
for the steady free convection over an isothermal flat plate 

C* 
r 

Ref. [IY] 

Gr, R’ll j Sir I 

2.01E7 24.457 23.247 
4.401 E7 29.405 27.644 
6.264E7 31.766 30.195 
7.347E7 33.060 3 I ,423 

This study 

25.245 24.028 9 

30.151 28.123 
31.886 31.856 
34.133 32.080 

6 

Sherwood numbers then agree with a less than 2% 
departure. For the steady-state regime, the calculated 

values of NM, and Sh, were compared with the fol- 
lowing relationships [ 191 : 

where 

,. 

, 
\ 

, 

\ 
-\ 

: 
0.8 2.4 4 5.6 

For the vertical plate particular case, Figs. 24, 

respectively, show the dimensionless u* velocity com- 
ponent, concentration and temperature profiles as 
functions of the _v* coordinate and time t. During the 
transient state, the thermal boundary-layer thickness 

is time increasing, because of the heating of the plate, 
whereas the mass and hydrodynamic ones decrease. 

At the very beginning of the drying process (t -c 60 

s), the temperature of the surface is constant because 
of the thermal inertia of the porous plate and the wall 
moisture content also stays constant as long as the 

(41) FIG. 3. Concentration profile in the boundary layer at s* = I 
I,r=10s;2,t=lh;3,r=10h;4,r=l4h;n,,=5kg 
kg~-‘(drybasis);&=O.S;fJ, =2S’C;h,=S%;Q=SOOW 

m ’ : 2 = 40’. 

6 

1.6 2.4 3.2 “4 y* 

FIG. 4. Temperature protile in the boundary layer at .v* = I. 
I, t = IO s; 2, I = I h; 3. I = IO h; 4, I = 14 II; II,, : 5 kg 
kg ’ (dry basis) ; 8: = 0.5 ; tJ, =2YC:h,=5%;Q=500W 

m :;r=40 

temperature difference between the wall and ambient 
air is. During this stage, heat and concentration wall 
gradients are driven by conduction and diffusion 
because the boundary layer is not fully developed. 
Once the buoyancy forces have induced a boundary- 
layer flow type, heat and moisture are removed by 
convection which becomes the main transport mech- 

.* anism as compared with conduction and diffusion. 

FIG. 2. Velocity profile in the boundary layer at .x* = 1. 1, 
The average wall temperature is then time increasing 

/= lOs;2.r= 1 h;3,/- lOh;4,t= 14h;w,,=5kgkgm’ but the average Nusselt number first decreases a lot 

(drybasis):c=0.5:0, =2SC;h,=5%;Q=500Wm~*; because the thermal boundary-layer thickness grows 
x=40. up and the wall latent heat flux diminishes as the 
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4 

‘-.- 3’0 d lo3 15 
&x.) 

FIG. 5. Variations of the average Nusselt (curve I) and 
Sherwood (curve 2) numbers during the transient state at 
x* = I : w,, = 5 kg kg ’ (dry basis) ; E = 0.5 ; H, = 25°C ; 

h,=5%;Q=500Wm~2;~=0. 

surface is dried (Fig. 5). This drying also acts on the 
value of the average Sherwood number. Both Nu and 
Sh are a minimum for approximately t = 5000 s and 

then slowly increase as long as internal moisture can 
be removed from the porous material. The cor- 

responding local values of the Nusselt and Sherwood 
numbers are plotted in Fig. 6 for t = I, 6 and 14 h : 
these curves show that the temperature and con- 
centration differences between the wall and ambient 
air are lower at the bottom of the plate, where evap- 
orative cooling accompanying the wall moisture evap- 
oration is minimal. 

The dimensionless temperature and moisture con- 

tent profiles in the porous plate are respectively 
reported on Figs. 7 and 8 for s* = 0.5 and 1 at t = 1 
and 14 h. Under the effect of the constant wall heating 

flux Q, the temperatures of all locations in the plate 
increase with time and are higher from the bottom to 
the top, as explained above. The moisture content is 

- Nu,Gr;‘~ 
---Sh,Gr;‘4.103 

15 

10 

5 

23 

FIG. 6. Variations of the local Nusselt (a) and Sherwood (b) 
numbersat.x*=I:l,t=lh;2,t=6h;3,t=l4h;~,~=5 
kg kg- ’ (dry basis) ; E = 0.5 : 0, = 25’C ; h, = 5% ; Q = 500 

W m- ’ : ct = 0'. 

TC 

t 3’ 

2 

,,A ,’ 

1.04. ,’ 
,z’ 

,,;,,;,f, 
/’ 

_,’ ,’ 
>’ , 

,, ,’ ’ 
1.02. __a’ ___ ._-,’ . x= 1 ~A_, 1 ~ 

____~.---- 0.5 7i / 
1 

0.25 0.5 0.75 

FIG. 7. Temperature distributions tn the porous plate. For 
x*=0.5 and I. I, f= I h; 2, != I4 h; rc,,=5 kg kgg 
(drybasis);c=0.5;0, =25C:h,=5%:Q=500Wm ‘: 

905 

r=O 

W* 

r:i - 
0.5 --- 

1 

L-----J 

I 

\ 

2 
0.9 

\ 
3 

o.8 u- : 

FIG. X. Moisture content distributions in the porous plate 
for x* = I and 0.5. I, t = I h ; 2. I = 3 h : 3. t = I4 h : wil = 5 
kgkg-‘(drybasis);i:=0.5:@, =25'C:h, =5%:Q=500 

Wm ‘:x=0 ;(I, =25C. 

seen to decrease with time and is highly correlated 
with the position of the thermal vaporization zone 
which is deeper as time increases. It should be noted 
that the moisture removed also depends on the vapour 
diffusion from the evaporation zone to the surface of 
the plate, which means that the physical structure of 
the porous material acts on heat and mass transfer in 

the boundary layer. This phenomenon can be visu- 
alized by varying the value of the vaporization factor 
E, as shown in Fig. 9. 

In Fig. 10, the local Nusselt and Sherwood numbers 
are plotted against the x* coordinate for three values 
of the inclination angle 5~ = 0 (vertical plate), 30 and 
60 These values were obtained at a time of 120 s, 
when the thermal, mass and hydrodynamic boundary 
layers are fully developed. As SL is higher, the active 
component of buoyancy forces, which generate the 
free convection, proportionally decreases with cos (x), 
inducing smaller local heat and mass transfer co- 
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1.05 L I 

2’ 
/,’ ~ 

/’ 

\i 

,’ 
/,’ 

__-- 
1 _-- 

.\ 
\ 

\ i 
o.96i , , , ‘, “y 

0.25 0.5 0.75 - Yl 

FIG. 9. Effect of the phase conversion factor i: on temperature 
.znd moisture content distributions in the porous plate at 
.\-* = I. I. t: = 0.5 : 2, x = I ; I = 3 h: wl, = 5 kg kg ’ (dry 

basis);O, =25C:/l,=5%;8=5OOWm ‘:r=O. 

_Nu,G~;“~ 

Sh x Gr;“s ~10~ 
I , 

‘1 
I 

la 

5 

FIG. IO. Variations of the local Nusselt and Sherwood num- 
bers with the inclination angle of the plate at I* = I. I. 
a=0 (vertical plate); 2. @=30”; 3, x=60 ; I= 120 s; 
w. = 5 kg kg- ’ (dry basis) ; I; = 0.5 : 0, = 25’C : /I, = 5% ; 

Q = 500 W mm ‘. 

1 

FIG. I I. Velocity profile in the boundary layer as a function 
of the inclination angle of the plate at x* = I. t = I20 s ; I, 
c( = 30 ’ : 2. z = 60 : c = 0.5 : wu = 5 kg kg ’ (dry basis) ; 

0, =25’C:h, =5%:Q=500Wm ‘, 

st lo3 

45 

30 

15 

0 

FIG. 12. Temperature profile in the boundary layer as a 
function of the inclination angle of the plate at x* = I. I. 
lr = 30 ; 2, c( = 60 : I: = 0.5 ; I = 120 s : w. = 5 kg kg ’ (dry 

basis) ; 0, = 25’ C ; /I, = 5% : Q = 500 W m ‘. 

efficients. It follows that the moisture removed from 
the plate also decreases as s( is higher. The cor- 
responding dimensionless U* velocity component, 
temperature and concentration profiles in the bound- 
ary layer are shown in Figs. 11-13: it is noted that 
the wall temperature and concentration decreases 
whereas the mass and thermal boundary-layers thick- 
nesses increase as a is higher, which explains the results 
given in Fig. IO. All other comments which have been 
outlined for the vertical plate case are also valid for 
the inclined plate one. 

20. 

2 4 6 0 

FIG. 13. Concentration profile in the boundary layer as a 
function of the inclination angle of the plate at Y* = 1. I, 
x = 30‘ ; 2, (x = 60’ ; E = 0.5 ; I, t = 120 s : w. = 5 kg kg ’ 

(dry basis) : 0, = 25’C: h, = 5%: Q = 500 W m ‘. 
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- N~,sr;“~ 

--- Sh$r;‘/M03 

FIG. 14. Effect of the vapour velocity at the wall on the local 
Nusselt and Sherwood numbers at x* = 1. 1, velocity is given 
by boundary conditions (I 1): 2, v = 0 for 1~ = 0: a = 60’; 
c = 0.5; i = 60 s; H‘() = 5 kg kg-’ (dry basis); %, = 25°C; 

Ii, = 5% ; Q = 500 W m-‘. 

In order to illustrate the effect of the vapour velocity 
at the wall, the value of which being calculated from 
boundary conditions (1 I), the local Nusselt and Sher- 
wood numbers have been compared with those result- 
ing from the usual assumption, that is u = 0 for y = 0. 
Figure 14 shows that this assumption is practically 
justified. On the other hand, it should be noted that 
the sensible heat of the removed vapour modifies the 
dimensionless temperature and concentration profiles 
in the boundary layer, as shown in Fig. 15 for x* = 1 
and I = 0”. 

Finally it appears from Fig. 16 that an increase of 
either the incident wall heat flux Q or the initial 
moisture content u’~ leads to a better heat and mass 
transfer from the plate. This figure presents the vari- 
ations of the ratio N* as a function of the x* coor- 
dinate : recalling the definition of N*, it thus illustrates 
the comparison between the intensities of thermal and 
mass buoyancy forces. 

5. EXPERIMENTAL INVESTIGATION OF THE 

BOUNDARY LAYER 

In order to give some quantitative validation of the 
above theory, the interferometric holography tech- 
nique has been used for the experimental investigation 
of heat and mass transfer in the boundary layer. The 
details of this real-time method have been reported 
elsewhere [20, 211 and will not be repeated here. 

The experimental sample is a pdrallelepipedic satu- 
rated pine wood plate (0.3 x 0.15 x 0.02 m), the heat- 
ing of which is assured by four 150 W lights. The 
incident radiative heat flux was measured with a solari- 
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FIG. 15. Effect of the sensible heat of the removed vapour 
on dimensionless temperature and concentration profiles in 
the boundary layer at x * = 1. I, sensible heat is neglected in 
the ~alcuiatjons; 2, sensible heat is not neglected. t = 120 s ; 
~=0.5;x*=I;w~=5kgkg-‘(drybasis);8,=25”C; 
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FIG. 16. Effect of the incident wall heat flux Q and the initial 
moisture content on the ratio N*. I, wr = 5 kg kg-.’ (dry 
basis), Q = 500 W m-‘: 2, xlP = 5 kg kg-’ (dry basis), 
Q = 1000 W m”.‘; 3, M’~ = 3 kg kg’-’ (dry basis), Q = 500 

W m-j : t = 1 h; E = 0.5; 0, - 25°C; h, = 5% ; a = 0’. 

meter whereas the plate temperature was controlled 
with two rows of thermocouples. 

Figure 17 presents a typical interferogram and the 
two interesting geometrical parameters for the cal- 
culation of the locat Nusselt and Sherwood numbers 
at point M: the distance AB from the wall and the 
distance X. For the special case of water vapour, the 
Schmidt number (0.68) and the Prandtl number (0.71) 
are very close, so that it is impossible to separate the 
interface fringes generated by concentration differ- 
ences from those which have a thermal origin. 



FIG. 17. Typical interferogram and defimtion of geometrical 
parameters used for the calculation of the local Nusselt and 

Sherwood numbers. 

However, if Pr = SC is postulated, it can easily be 
shown that [2l] 

.\’ 
Nlr, = S/I, = 

AB’ 
(42) 

The above equation only being valid for superficial 
evaporation. For internal evaporation, the Sherwood 
number is highly affected by the vapour diffusion in 
the porous material, which leads to smaller values of 

the mass transfer coefficient, as seen in the numerical 
results of this study. While experiments were carried 
out with a saturated porous material, Fig. I8 exhibits 
a reasonable agreement between theory and exper- 
imental data. 
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FIG. IX. Comparison between theoretical and experimental 
local Nusselt and Sherwood numbers at I* = I : z = 40‘ : 

0, = 26 C : II, = 38% ; Q = 460 W m ‘, 

6. CONCLUSION 

A theoretical analysis of the transient free cotl- 
section over an inclined wet flat plate has been prc- 
sented. The problem IS trcatcd b) linking the bound- 
al-y-layer equations with the ‘Luiknv DC Vries’ 

model. the linkage conditions being assured by the 
wall heat and mass transfer balances. When the incli- 

nation angle from the vertical direction increases. it is 
found that the boundary-layer heat and mass transfer 
diminishes, so that the moisture removed from the 
plate also dccrcascs. The avcragc Nusselt and Sher- 

wood numbers arc first time decreasing before cquat- 
ing to their steady-state value. It has been shown that 

these values arc highly affected by the internal vapour 
diffusion, so that the moisture removed is controlled 
by the structure of the porous material. For the special 
case of superficial evaporation. measurcmcnts with 
an interfcromctric holography method were carried 
out and comparison between theory and data shows 
a reasonably good agreement. 
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ETUDE DE LA CONVECTION NATURELLE TRANSITOIRE SUR UNE PLAQUE 
PLANE HUMIDE ET INCLINEE 

R&sum&-On presente une analyse nouveile de la convection naturelle transitoire entre une plaque humide 
et inch&e et fair ambiant. Dans chacune des deux regions qu’il est possible de definir dans ce probieme--- 
;i savoir la couche limite et la plaque poreuse-on ecrit un systtme d’tquations differentielles decrivant les 
transferts de masse et de chaleur. Les deux systemes sont couples a l’aide des bilans thermique et massique 
parietaux, desquels on deduit les nombres dc Nusselt et de Sherwood locaux et moyens. Les rtsultats 
thtoriques s’accordent avec ceux prealablement publies dans la litterature, pour quelques cas particuliers. 

Ces resultats sont aussi valid& par une etude experimentale de la couche limite. 

UNTERSUCHUNG DER INSTATI~N~REN LAMINAREN FREIEN KONVEKTION AN 
EINER GENEIGTEN FEUCHTEN EBENEN PLATTE 

Zusammenfassung-Eine neue analytische Untersuchung der instationiren natiirlichen Konvektion 
zwischen einer geneigten feuchten ebenen Platte und der umgebenden Luft wird vorgestellt. Zwei unter- 
schiedliche Gebiete werden betrachtet : Die Grenzschicht und die kapillarporiise Platte. Dafiir wird ein 
System von Differentialgleichungen formuliert. Die beiden Systeme sind durch die Warmestromdichte und 
die Massenstromdichte an der Wandobertliche gekoppelt, hieraus werden iirtliche und mittlere Nusselt- 
und Sherwood-Zahlen abgeleitet. Fiir einige Sonderfalle werden die Ergebnisse mit Angaben aus friiheren 
Arbeiten in der Literatur verglichen, wobei sich gute Ubereinstimmung zeigt. Dariiberhinaus ist 
die tjbereinstimmung zwischen theoretischen Ergebnissen und Versuchsdaten im Grenzschichtgebiet 

befriedigend. 

HCCJIEAOBAHHE HECTAHHOHAPHOH JiAMHHAPHOtt CBOBOAHOH KOHBEKHWH 
HAA HAIUIOHHOH BJIAIKHOH MK3CKOfl I1JIAClMHO~ 

Amomqast-npoeeneH aHanH3 riecra~oiraptiofi ecrecme~~oii ~otme~um nan HannoHHoii BnarsoSt 

n~~ocxok rmcr~noZ B orpymmueb4 ao3nyxe. &III peureHxa 3anarH fii.menyroTcn pasnenbeo l152 

o6nacrH: norpaHmwl cnol H ranmnspeo-nopacraa nnacrHHa--ma raruroil ~3 HHX nony9eHbl 

cmrehm m@&3e.n~anbHbrx ypastteml.06ecmTebfar cBmaxbl6anaHcoM Tema H bfaccbl Ha cTeHxe, 

H3 KOTOpOI.0 BblBOJWTCS JlOlGlJIbHble II CpeJJHHe WUa HyCCeJIbTa H ~~ByJ$tt.&iS HelCOTOpbEXCJIy'iaeB 

KaYeCTBeHHOe CpLlBHeHHe IlOXa3aJlO MX COOTWWI'BHe C pe3yJlbTaTaMH p$iHee Ony6JiIiKOSaHHbIX pa6or. 

Kpot.teTOrO,nOnygeHO y~O~~BOpH~bH~COr~aCUeMe*Xy TeO~Y~XRM~~y~bTaTa~ H 3KCXIe- 


